312. 戳气球

题目描述 有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。 现在要求你戳破所有的气球。每当你戳破一个气球 i 时,你可以获得 nums[left] * nums[i] * nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球 left 和气球 right 就变成了相邻的气球。 求所能获得硬币的最大数量。 说明: 你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100 示例: 输入: [3,1,5,8] 输出: 167 解释: nums = [3,1,5,8] –> [3,5,8] –> [3,8] –> [8] –> []   coins = 315 + 358…

Read more

174. 地下城游戏

题目描述 一些恶魔抓住了公主(P)并将她关在了地下城的右下角。地下城是由 M x N 个房间组成的二维网格。我们英勇的骑士(K)最初被安置在左上角的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。 有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。 为了尽快到达公主,骑士决定每次只向右或向下移动一步。 编写一个函数来计算确保骑士能够拯救到公主所需的最低初始健康点数。 例如,考虑到如下布局的地下城,如果骑士遵循最佳路径 右 -> 右 -> 下 -> 下,则骑士的初始健康点数至少为 7。 -2 (K) -3 3 -5 -10 1 10 30 -5 (P) 说明: 骑士的健康点数没有上限。 任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/dungeon-game 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 – DP 题目给定的数组dungeon存放了走入每个房间造成的血量变化,为了救出公主,要求到达右下角(P)时扣除外血量至少为1,因此我们可以从P点逆行回到起点K,求出起点K要求的最少血量。我们定义一个二维数组dp[|dungeon|+1][|dungeon[0]|+1],dp数组比原数组“大了一圈“,这样做能够方便我们统一地处理逻辑,否则需要判断边界条件。到达P点以后还会扣除或者增加血量,所以走过P点到达右方或下方的血量至少需要1。 图1展示了题目的例子计算dp数组后的结果。要想求出到达位置i,j需要的最少血量,那么可以从位置i+1,j与i,j+1逆推而来。例如dp[2][1]=1,dp[1][2]=5,dungeon[1][1] = -10,说明我们只需要在位置1,1有血量11,就能够到达[2][1]。还有一点要注意,血量不可能为负数。例如在2,1处能够加血30,那我们不能说到达2,1时只需要-29点血量,然后再给我加上30变成1,这是不对的,血量不能为负值。所以在计算完min(dp[i+1][j], dp[i][j+1])+dungeon[i][j]还需要对1取最大。 该解法时间复杂度为O(m*n),m与n为dungeon数组长与宽。全部代码如下:

Read more

337. 打家劫舍 III

题目描述 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。 计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。 示例 1: 输入: [3,2,3,null,3,null,1] 3 / \ 2 3 \ \ 3 1 输出: 7 解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7. 示例 2: 输入: [3,4,5,1,3,null,1]   3 / \ 4 5 / \ \ 1 3 1 输出: 9 解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9. 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/house-robber-iii著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1…

Read more

376. 摆动序列

题目描述 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。 例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。 给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。 示例 1: 输入: [1,7,4,9,2,5] 输出: 6 解释: 整个序列均为摆动序列。 示例 2: 输入: [1,17,5,10,13,15,10,5,16,8] 输出: 7 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。 示例 3: 输入: [1,2,3,4,5,6,7,8,9] 输出: 2 进阶:你能否用 O(n) 时间复杂度完成此题? https://leetcode-cn.com/problems/wiggle-subsequence/ 解法1 – 动态规划 O(n^2) 我们定义dp数组为dp[|nums|][2],dp[i][0]表示第i个元素作为较小元素构成的摆动序列最大长度;dp[i][1]表示第i个元素作为较大元素构成的摆动序列最大长度,且必须使用nums[i]。那么我们有dp[i][0] = dp[j][1]+1如果存在nums[j] > nums[i],否则dp[i][0]=1;dp[i][1] = dp[j][0]+1如果存在nums[j] < nums[i],否则dp[i][1]=1(0<=j<i)。 需要注意,当我们填充dp[i][0/1]时,我们向前寻找dp[j][1/0],不能找到第一个大于/小于nums[i]的元素后就停止,而是应该搜索到j = 0。因为有这样的case: 例如图1中的case,当i=4时nums[4]=0,当我们更新dp[4][0]时,我们不能只向前搜寻第一个大于nums[4]的位置。因为前面可能有更长的摆动序列,能够和0链接上,形成更长的摆动序列。在这个例子中,{53,1,3,1}与{1}都能和[0]形成摆动序列,但是我们要选最长的。 该方法的时间复杂度为O(n^2),空间复杂度为O(n)。全部代码如下: 解法2 – 动态规划 O(n) 我们还是使用动态规划,但是我们更改了dp数组的定义。我们定义数组dp[|nums|][2],dp[i][0]表示nums前i个数构成的摆动序列最大长度且序列最后一个数是较小的;dp[i][1]表示nums前i个数构成的摆动序列最大长度且序列最后一个数是较大的。那么有dp[i][0]…

Read more

53. 最大子序和

题目描述 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。 进阶: 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。 https://leetcode-cn.com/problems/maximum-subarray/ 解法1 – 使用DP,O(n) 我们定义一维数组|dp| = |nums|,dp[i]表示必须使用nums[i]元素,得到的连续子数组的最大和。那么有dp[i] = max(nums[i], dp[i – 1] + nums[i])。 解释一下,如果前面累积的最大和是负数,那么使用累积的和与nums[i]相加会使得和更小,我们还不如直接使用nums[i]作为新的连续子数组。 时间复杂度O(n),空间复杂度O(n)。全部代码如下: 我们观察到dp[i]只依赖于dp[i-1],因此我们可以使空间复杂度压缩到O(1)。 解法2 – 分治法,O(nlogn) 我们定义函数maxSubArray(nums, l, r),表示区间[l, r]内找到的连续子数组的最大和。那么在区间[l, r]内的连续子数组最大和有3种来源: 来源于[l, m) (m = (l + r) / 2),记为max1; 来源与(m, r],记为max2; 来源于跨中间元素m的区间,记为max3 那么[l, r]区间的连续子数组最大和有max(max1, max2, max3)。其中,第3种情况比较复杂。我们需要从m的左右两侧出发,通过扫描来求和,如图1所示。 我们递归求解区间[l,…

Read more

309. 最佳买卖股票时机含冷冻期

题目描述 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。​ 设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票): 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。 示例: 输入: [1,2,3,0,2] 输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出] https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/ 解法1 解法1使用到了有限状态机(FSM),在第i天我们的状态有3种,分别是hold(持股)、sold(抛售)和rest(休息)。第i天的hold状态可由第i-1天的hold状态(继续持有)和第i-1天的rest状态(买入股票)而来。第i天的rest状态可由第i-1天的rest状态(继续休息)和第i-1天的sold状态(冷冻期)而来。第i天的sold状态只能从第i-1天的hold状态而来(抛售股票)。我们在图1描述了这些状态。 对于第1天,sold状态是不合法的,因为我们还没有买进;对于hold和rest状态是合法的。题目要求计算最大利润,那么最后一天的最大利润只可能来自sold或者rest状态,而绝不可能来自于hold状态(因为我们手中持有股票)。 我们定义了3个长度为|prices|的数组来实现有限状态机,分别是hold、sold和rest。对于第1天,我们初始化hold[0] = -prices[0], sold[0] = -∞ (第1天抛售状态为不合法), rest[0]。hold[i], sold[i]与rest[i]的物理意义分别是如果选择第i持股、抛售与休息能获得的最大利益。那么我们有: hold[i] = max(hold[i-1], rest[i-1] – prices[i]) rest[i] = max(rest[i – 1], sold[i-1]) sold[i] = hold[i-1] + prices[i] 下面,我们举两个例子来解释算法执行过程。 图2中列举了算法执行过程,我们分别解释i=1(第二天)与i=4(第5天)的计算过程。 例1: (i…

Read more

188. 买卖股票的最佳时机 IV

题目描述 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。 注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。 示例 1: 输入: [2,4,1], k = 2 输出: 2 解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。 示例 2: 输入: [3,2,6,5,0,3], k = 2 输出: 7 解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润…

Read more

123. 买卖股票的最佳时机 III

题目描述 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。 注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。 示例 1: 输入: [3,3,5,0,0,3,1,4] 输出: 6 解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。   随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。 示例 2: 输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格…

Read more

121. 买卖股票的最佳时机

题目描述 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。 注意你不能在买入股票前卖出股票。 示例 1: 输入: [7,1,5,3,6,4] 输出: 5 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。 示例 2: 输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。 https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/ 解法1 解法1使用动态规划方法,我们定义两个数组L和P。L[i]表示第0…i天最低的股价;P[i]表示第0…i天能获得的最大利益,那么答案 = max(P[i]), 1 <= i < |prices|。 那么我们就能够写出状态转移方程L[i] = min(L[i] –…

Read more

115. 不同的子序列

题目描述 给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数。 一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,”ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是) 示例 1: 输入: S = “rabbbit”, T = “rabbit” 输出: 3 解释: 如下图所示, 有 3 种可以从 S 中得到 “rabbit” 的方案。 (上箭头符号 ^ 表示选取的字母) rabbbit ^^^^ ^^ rabbbit ^^ ^^^^ rabbbit ^^^ ^^^ 示例 2: 输入: S = “babgbag”, T = “bag” 输出: 5 解释: 如下图所示, 有 5 种可以从 S 中得到 “bag” 的方案。 (上箭头符号 ^ 表示选取的字母) babgbag…

Read more