221. 最大正方形

题目描述 在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。 示例: 输入: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 输出: 4 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/maximal-square著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 题目要求找到矩阵matrix中只包含1的最大正方形,并返回其面积。我们可以转换成求子方阵中1的数量。如果子方阵中所有元素的和与子方阵的size的平方相等,那么这个方阵中的元素肯定都是1。 如果采用暴力的解法: 枚举每个起始位置时间复杂度O(n^2); 在该位置下枚举子方阵的大小时间复杂度O(n); 最后需要统计该方阵有多少个1,时间复杂度为O(n^2)。 那么整体来看,使用暴力法的时间复杂度为O(n^5)。这么高的复杂度,肯定是通不过的。但是我们可以利用预计算,提前求出从左上角(0, 0)到任意位置的矩阵中1的数量。再通过简单的加减法,就能求得任意子方阵中1的数量: 图1描述了对于矩阵matrix,通过预计算求得从(0, 0)到任意位置(row, col)的和。我们先忽略sum这个矩阵是怎么求得的,下面我们用它实现O(1)的时间复杂度来计算任意子方阵中1的数量。 图1中红色区域是我们想要求得的解,红色 = 橙色 – 蓝色 – 绿色 + 紫色。因为从左上角到任意位置的和都通过预计算求过了,只需要带入公式用O(1)的时间复杂度就能求得起始位置为(row, col),大小为size的方阵的和。对于整个问题,我们只需要枚举起始位置和枚举方阵的大小,整体的时间复杂度为O(n^3)。 上面的那个例子可以用公式可以表述为:…

Read more

673. 最长递增子序列的个数

题目描述 给定一个未排序的整数数组,找到最长递增子序列的个数。 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。 示例 2: 输入: [2,2,2,2,2] 输出: 5 解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/number-of-longest-increasing-subsequence著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 – Top-down 这道题目是第300题的升级,那道题目仅要求找出最长递增子序列(LIS)的长度,而这道题目需要统计LIS有多少个。为了求出数组nums的LIS个数,我们先要求得最长递增子序列的长度maxLen。然后扫描nums数组,统计LIS长度为maxLen的个数。 首先我们实现一个函数,求数组nums的LIS的长度(参考300题的Top-down解法)。我们定义函数lengthOfLIS(int[] nums, int n),表示计算数组nums前n个元素(n从1开始,包含第n个且必须使用第n个元素)能够形成LIS的长度。例如我们有nums = [1,2,3,2,2],那么lengthOfLIS(nums, 4) = 2而不是3,因为我们必须使用nums[4]。 为了求num前n个元素的LIS,我们可以使用递归来解决。对于长度n,我们向前寻找某一元素i,使其满足nums[n] > nums[i](递增的定义),然后递归调用lengthOfLIS(nums, i),即求解nums数组前i个元素的LIS。代码如下: 下一步,我们定义函数count(int[] nums, int n)用于计算nums前n个元素(n从1开始,包含第n个且必须使用第n个元素)构成的LIS长度为maxLen的递增子序列数量。它会调用上面实现的函数lengthOfLIS(nums, n)。在这里我们举一个例子,nums = [1,3,2,4,5],则 count(nums,…

Read more

300. 最长上升子序列

题目描述 给定一个无序的整数数组,找到其中最长上升子序列的长度。 示例: 输入: [10,9,2,5,3,7,101,18]输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。你算法的时间复杂度应该为 O(n2) 。进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗? 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-increasing-subsequence著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 – O(n^2) 这是一道经典的dp题目,大体上有两种解法,第一种是dp(时间复杂度O(n^2));第二种是dp+二分搜索(时间复杂度O(nlogn)),我们先介绍O(n^2)的解法。而第一种dp还可以分为Bottom-up和Top-down两种实现方式。 Bottom-up 我们定义数组dp[|nums|],dp[i]表示使用nums数组前i个元素且必须使用nums[i],能够构成的最长递增子序列的长度。那么有dp[i] = max(dp[j]) + 1, 其中nums[i] > nums[j], j < i,如果找不到这样的j,那么dp[i] = 1。 如果形象的描述算法的执行过程那就是使用双重循环,外循环使用变量i指向nums数组的每个元素,然后内循环用变量j扫描0~i。当nums[i] > nums[j]时,更新prev = max(prev, dp[j])。当内层循环扫描完毕,更新dp[i] = perv + 1。当双重循环执行完毕,dp数组中的最大值就是nums的最长递增子序列。 Top-down 自顶向下的思路使用递归来实现,我们定义一个辅助函数LIS(nums, curr),表示从nums数组的前curr个元素(包含curr)寻找LIS,并返回LIS的长度。那么我们需要利用更小的子问题求解当前问题,所以在for循环中又递归调用LIS。 为了避免重复求解,我们使用数组int[] cache记录求解过问题的答案。现在我们只需要循环的调用LIS函数,将各种问题的规模都交给LIS函数来求解,最大值就是数组nums的LIS。 全部代码如下: 解法2 – O(nlogn) 解法2是一个神奇的解法,我们一边读取nums数组,一边维护一个由nums形成的递增子序列 –…

Read more

241. 为运算表达式设计优先级

题目描述 给定一个含有数字和运算符的字符串,为表达式添加括号,改变其运算优先级以求出不同的结果。你需要给出所有可能的组合的结果。有效的运算符号包含 +, – 以及 * 。 示例 1: 输入: “2-1-1” 输出: [0, 2] 解释: ((2-1)-1) = 0 (2-(1-1)) = 2 示例 2: 输入: “2*3-4*5″ 输出: [-34, -14, -10, -10, 10] 解释: (2*(3-(4*5))) = -34 ((2*3)-(4*5)) = -14 ((2*(3-4))*5) = -10 (2*((3-4)*5)) = -10 (((2*3)-4)*5) = 10 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/different-ways-to-add-parentheses著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 这道题目采用分治法来解决,题目要求实现函数diffWaysToCompute,输入算数表达式input,输出不同的括号组合产生的计算结果列表ans。首先,我们扫描input寻找操作符即+、-和*。如果在input中找不到任何一个运算符,那么它就是操作数,我们将它转化为数字类型,加入到ans中返回即可。否则,input是包含运算符的表达式,情况变得复杂。 如果遇到了操作符,则将input分割成左右两部分,左右两部分可能还是一个计算表达式,我们继续将它送给函数diffWaysToCompute递归的处理,得到左右两部分返回值leftOpnds与rightOpnds。我们将leftOpnds和rightOpnds按照操作符optr做笛卡尔积,将运算结果加入到ans中就完成了对运算符的处理,我们编写了函数calculate(char optr, List leftOpnds, List rightOpnds)来实现这个功能。 举一个例子,对于表达式input = “2*3-4*5″,先处理第一个运算符*,将input分割成左右两个表达式”2″和”3-4*5″。假设我们已经知道了”3-4*5″能产生结果列表[-5, -17](后面会说怎么算出来的)。那么将2与[-5, -17]做乘法就能得到[-10,…

Read more

139. 单词拆分

给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1: 输入: s = “leetcode”, wordDict = [“leet”, “code”]输出: true解释: 返回 true 因为 “leetcode” 可以被拆分成 “leet code”。 示例 2: 输入: s = “applepenapple”, wordDict = [“apple”, “pen”] 输出: true 解释: 返回 true 因为 “applepenapple” 可以被拆分成 “apple pen apple”。注意你可以重复使用字典中的单词。 示例 3: 输入: s = “catsandog”, wordDict =…

Read more

120. 三角形最小路径和

题目描述 给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。 说明: 如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/triangle 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 这道题目使用dp来求解,通过之前求得小规模的问题计算更大规模的问题。题目提到“每一步只能移动到下一行中相邻的结点上”,我们把题目给定的样例按照最左端对其,我们将这个数组记为triangle。 [ [2], [3,4], [6,5,7], [4,1,8,3] ] 我们在triangle数组中找一个比较general的case,对于元素8,它的上一行只有5和7能够走到8。也就是说当元素处于第i行第j列时(i,j从0计数),只能从i-1, j-1与i-1, j的位置走来。我们就可以定义数组dp[i][j]表示自顶向下走到第i, j位置时最小路径和,有dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j]。 需要注意一点的是越界处理。当i=0,j=0时,自顶向下只有triangle[0][0]一个元素,取dp[i][j] = trangle[i][j];当j=0时,dp[i-1][j-1]是越界的,取dp[i][j] = dp[i-1][j] + triangle[i][j];当j=i时,dp[i-1][j]是越界的,取dp[i][j] = dp[i-1][j-1] + triangle[i][j]。 在实现时,我们采用Bottom-up的解法,声明与triangle数组同型(大小一致)的数组dp,递增变量i,j,将变量带入公式循环更新dp数组,最终的答案为min(dp[dp.length – 1])。在实现中,为了避免扫描dp[dp.length – 1]来求最小值,我们使用临时变量来存储当前遇到的最小值。 解法1优化 题目提到“如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。”,下面我们就来优化解法1的空间复杂度。通过观察dp公式,可以看出dp[i][j]仅依赖于dp[i-1][j-1]与dp[i-1][j]。那我们可以声明大小为dp[2][|triangle|]的数组,循环使用dp[0]与dp[1]。dp[0]表示上一轮计算结果,dp[1]表示本轮计算结果,当完成一轮迭代后交换dp[0]与dp[1]。

Read more

337. 打家劫舍 III

题目描述 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。 计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。 示例 1: 输入: [3,2,3,null,3,null,1] 3 / \ 2 3 \ \ 3 1 输出: 7 解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7. 示例 2: 输入: [3,4,5,1,3,null,1]   3 / \ 4 5 / \ \ 1 3 1 输出: 9 解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9. 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/house-robber-iii著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1…

Read more

133. 克隆图

题目描述 给定无向连通图中一个节点的引用,返回该图的深拷贝(克隆)。图中的每个节点都包含它的值 val(Int) 和其邻居的列表(list[Node])。 示例: 输入: {“$id”:”1″,”neighbors”:[{“$id”:”2″,”neighbors”:[{“$ref”:”1″},{“$id”:”3″,”neighbors”:[{“$ref”:”2″},{“$id”:”4″,”neighbors”:[{“$ref”:”3″},{“$ref”:”1″}],”val”:4}],”val”:3}],”val”:2},{“$ref”:”4″}],”val”:1} 解释: 节点 1 的值是 1,它有两个邻居:节点 2 和 4 。 节点 2 的值是 2,它有两个邻居:节点 1 和 3 。 节点 3 的值是 3,它有两个邻居:节点 2 和 4 。 节点 4 的值是 4,它有两个邻居:节点 1 和 3 。 提示: 节点数介于 1 到 100 之间。 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点p 的邻居。 必须将给定节点的拷贝作为对克隆图的引用返回。 来源:力扣(LeetCode)…

Read more

332. 重新安排行程

题目描述 给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 出发。 说明: 1. 如果存在多种有效的行程,你可以按字符自然排序返回最小的行程组合。例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前 2. 所有的机场都用三个大写字母表示(机场代码)。 3. 假定所有机票至少存在一种合理的行程。 示例 1: 输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] 输出: [“JFK”, “MUC”, “LHR”, “SFO”, “SJC”] 示例 2: 输入: [[“JFK”,”SFO”],[“JFK”,”ATL”],[“SFO”,”ATL”],[“ATL”,”JFK”],[“ATL”,”SFO”]] 输出: [“JFK”,”ATL”,”JFK”,”SFO”,”ATL”,”SFO”] 解释: 另一种有效的行程是 [“JFK”,”SFO”,”ATL”,”JFK”,”ATL”,”SFO”]。但是它自然排序更大更靠后。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/reconstruct-itinerary 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 解法1 首先,我们忽略按照字典顺序排列这一条件,那么这道题本质上求得的是有向图的欧拉路径。 严谨地说,一个连通有向图G有欧拉路径,指存在一个顶点,从它出发,沿着有向边的方向,可以不重复地遍历图中所有的边。 https://zh.wikipedia.org/wiki/%E4%B8%80%E7%AC%94%E7%94%BB%E9%97%AE%E9%A2%98 题目中给定的机场名称是图的顶点,行程是图的边。题目要求重新安排行程,从示例可以看出每个行程都必须用到且只用一次。对应到欧拉路径的定义,每条边都要走到,且不重复。那么,这道题就转化成了给定起点,求一条字典顺序最小的欧拉路径。为了引出解法,我们先放几个例子。 图1展示了一张顶点度数都为偶数的图,首先我们忽略掉按字典顺序输出的条件。我们可以看出,如果顶点度数为偶数,那么我们先从JFK到MUC再回JFK到ATL最后返回JFK,又或是JFK先到ATL再回JFK再去MUC再回JFK,都是合法的路径。如果按照字典顺序输出,我们优先访问字典顺序小的节点ATL即可。因此,我们使用贪心策略,优先访问字典顺序小的顶点。 图2这个例子可以看出,我们别无选择必须先从JFK到NRT再回JFK,最后到达KUL作为终点。如果我们按照字典顺序先到KUL,就进入了“死路”。但是上一个例子我们提到了,优先访问字典顺序小的顶点,那么我们第一次肯定是先到KUL,这就走不通了,那怎么解决呢?当我们采用DFS方式遍历图时,需要将访问到的节点逆序插入到结果集。因此第一个访问到的节点将出现在结果集最后面,而我们是以顺序的方式来查看结果。如果第一个访问的节点是“孤岛节点”,他会出现在结果集的最后。当我们顺序读取结果集时,这种“孤岛节点”是最后遇到的,是图遍历的终点,这样就没有问题了。 我们在图3绘制了算法执行过程,黑色实线表示图的边;红色实实线表示递归调用;绿色虚线表示递归调用返回;数字代表执行顺序;文字表示执行的操作,结果集的数字表示在第几步操作加入的。我们从JFK出发,沿着边到达KUL(因为KUL字典顺序比NRT小),然后KUL没有临接点,将它放入结果集(2),然后从KUL返回到达JFK,注意这个是通过调用栈返回而不是沿着边返回。然后从JFK出发沿着边到达NRT,因为NRT到JFK有返回边,沿着边再回到JFK。此时JFK的两个临接点都访问过了,我们将JFK加入结果集(6)。然后我们从JFK返回到NRT,这是从调用栈返回。然后NRT的临接点都访问过了,我们将NRT加入结果集(8),然后退栈回到JFK。JFK的所有临接点都访问过了,将JFK加入结果集(10),然后退栈,整个流程结束。…

Read more

113. 路径总和 II

题目描述 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。 说明: 叶子节点是指没有子节点的节点。 示例:给定如下二叉树,以及目标和 sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1 返回: [ [5,4,11,2], [5,8,4,5] ] https://leetcode-cn.com/problems/path-sum-ii/ 解法1 这道题是“112. 路径总和”的升级版本,在这道题我们需要把所有可能的解都存储下来并返回。为了记录路过的节点,我们使用一个变量List<Integer> path来存储路过的节点的值。我们将每个路过的节点的值都放入path中,如果走到叶节点发现是一条可行的路径(节点值之和等于sum),我们就复制path数组,然后放入到结果变量List<List<Integer>> ans。当从节点返回时,我们需要回溯以保证path变量的正确性。 上面的思路可以使用二叉树的先序遍历来实现。我们用题目给的case来描述执行过程:我们不断地向左走,找到一条路径”5->4->11->7″,path变量的内容依次变为[5], [5, 4], [5, 4, 11], [5, 4, 11, 7]。然后我们发现这条路径的和不等与sum,我们从节点7回溯,path变量从[5,4,11,7]变为[5,4,11],回到节点11走向它的右子树,此时path变量为[5,4,11,2],发现路径和与sum相等,复制path数组的到ans。因为我们需要复用path数组,所以不能直接调用ans.add(path),而是应该调用ans.add(new ArrayList<>(path)),创建path的副本并加入到ans中。 假设我们不考虑path数组复制的过程,那么时间复杂度为O(n)(因为要遍历所有节点),空间复杂度为O(n)(空间为调用栈开销)。

Read more